King Fahd University of Petroleum and Minerals

College of Computer Sciences and Engineering Information and Computer Science Department

ICS 254: Discrete Structures II Second semester 2016-2017 (162) Major Exam #2, Thursday April 20, 2017 Time: **120** Minutes

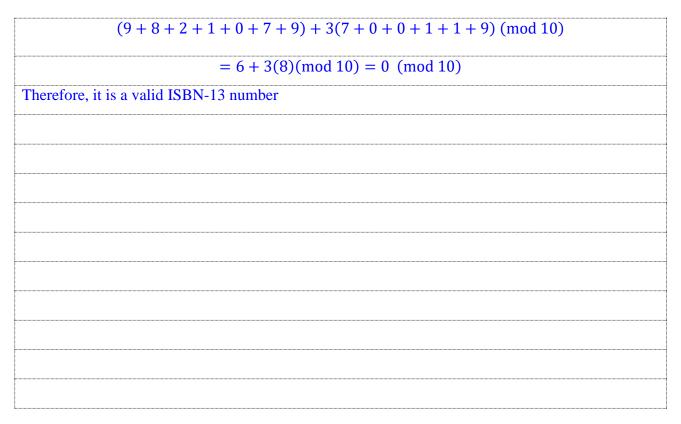
Name: _____

ID#: _____

Section:

Instructions:

- 1. The exam consists of 9 pages, including this page, containing 6 questions.
- 2. Answer all questions. Show all the steps.
- 3. Make sure your answers are **clear** and **readable**.
- 4. The exam is closed book and closed notes. **No calculators** or any helping aides are allowed. Make sure you turn off your mobile phone and keep it in your pocket.
- 5. If there is no space on the front of the page, use the back of the page.


Question	Maximum Points	Earned Points
1	10	
2	15	
3	15	
4	10	
5	25	
6	25	
Total	100	

Α	В	С	D	E	F	G	Н	Ι	J
00	01	02	03	04	05	06	07	08	09
K	L	М	N	0	Р	Q	R	S	Т
10	11	12	13	14	15	16	17	18	19
U	V	W	X	Y	Ζ				
20	21	22	23	24	25				

Q1: [10 points] Answer the following questions.

The check digit a_{13} for an ISBN-13 number with initial digits $a_1a_2a_3 \dots a_{12}$ is determined by the congruence $(a_1 + a_3 + \dots + a_{11} + a_{13}) + 3(a_2 + a_4 + \dots + a_{10} + a_{12}) \equiv 0 \pmod{10}$.

(a) [5 points] Determine whether 978-0-201-10179-9 is a valid ISBN-13 number.

(b) [5 points] Show that there are transpositions of two digits that are not detected by an ISBN-13 number.

Swapping the location (index) of any two digits in $\{a_1, a_3, a_5, a_7, a_9, a_{11}, a_{13}\}$ or in
$\{a_2, a_4, a_6, a_8, a_{10}, a_{12}\}$ will not change the value of the summation. Hence transpositions of such
digits may go undetected as the number is still a valid ISBN-13 number but may not be the original
one.

Q2: [15 points] Classical Cryptography.

(a) [8 points] Encrypt the plaintext message *READ A LOT* using the shift cipher with shift k = 18.

$R = 17, f(R) = 17 + 18 \pmod{26} = 9 (J)$
$E = 4, f(E) = 4 + 18 \pmod{26} = 22 (W)$
$A = 0, f(A) = 0 + 18 \pmod{26} = 18 (S)$
$D = 3, f(D) = 3 + 18 \pmod{26} = 21 (V)$
$L = 11, f(L) = 11 + 18 \pmod{26} = 3 (D)$
$0 = 14, f(0) = 14 + 18 \pmod{26} = 6 (G)$
$T = 19, f(T) = 19 + 18 \pmod{26} = 11 (L)$
JWSV S DGL

(b) [7 points] Decrypt the message *FUPK ISGM EATR* which is the ciphertext produced by encrypting a plaintext message using the transposition cipher with blocks of four letters and the permutation σ of {1, 2, 3, 4} defined by $\sigma(1) = 4$, $\sigma(2) = 1$, $\sigma(3) = 2$, and $\sigma(4) = 3$.

We first compute σ^{-1} .	
$\sigma^{-1}(1) = 2, \sigma^{-1}(2) = 3, \sigma^{-1}(3) = 4, \sigma^{-1}(4) = 1$	
$FUPK \rightarrow KFUP$	
$ISGM \rightarrow MISG$	
$EATR \rightarrow REAT$	
KFUPM IS GREAT	

Q3: [15 points] The RSA Cryptosystem.

(a) [5 points] Propose an RSA public key encryption method based on the two prime numbers p = 5 and q = 11.

In order to apply RSA, we first need a number that is relatively prime to $(p-1)(q-1)$
(4)(10) = 40 in order to use as an exponent <i>e</i> . Possible values include 3, 7, 9, etc. Depending
on the choice, the encryption method for message M becomes $M^e \pmod{55}$.
Hence, possible answers are:
$C = M^3 \pmod{55}$
$C = M^7 \pmod{55}$
$C = M^9 \pmod{55}$

(b) [5 points] Based on your encryption method in part (a), encrypt the letter H. Since the value of H is 7, we have the following possibilities:

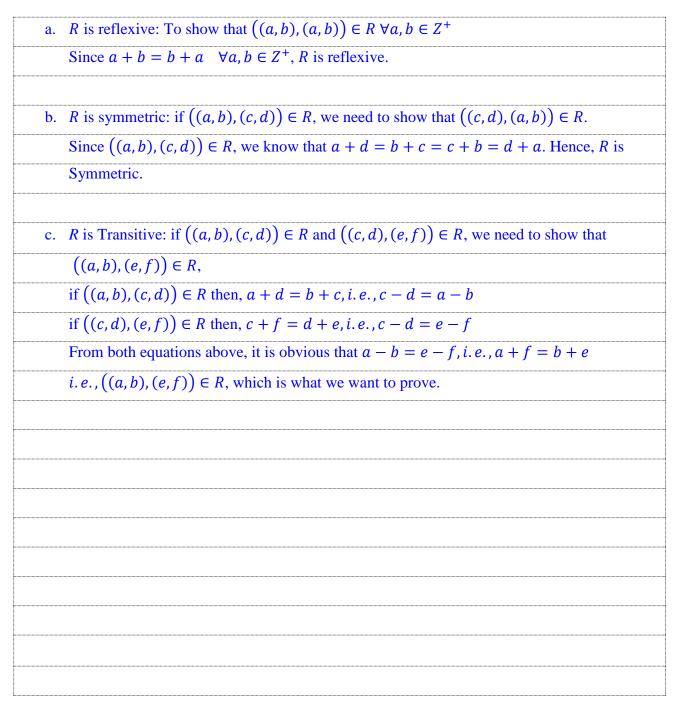
7 ³ (<i>moc</i>	$) = 49 * 7 \pmod{55} = -6 * 7 \pmod{55} = -42 \pmod{55} = 13$
Other possible and	rs include:
1	$7^7 \pmod{55} = 28$
	$7^9 \pmod{55} = 52$

(c) [5 points]] Based on your encryption method in part (a), find the decryption method and show how to decrypt the encrypted message 24. No need to carry out the calculations. Just CLEARLY show what needs to be computed.

- If <i>e</i>	= 3 then	
	40 = 3	3(13) + 1
	40 - 3(13	3) = 1
	40 + 3(-1	3) = 1
	$\therefore d = -13 \pmod{40}$	$) = 27 \pmod{40}$
	$M = 24^{27}$ (r	nod 55)
2.	If $e = 7$ then $d = 23$, and $M = 24^2$	³ (mod 55)
2.	If $e = 9$ then $d = 9$, and $M = 24^9$ ((mod 55)

1

Q4: [10 points] Suppose that *R* and *S* are reflexive relations on a set *A*.


(a) (5 points) Prove or disprove that $R \cap S$ is a reflexive relation

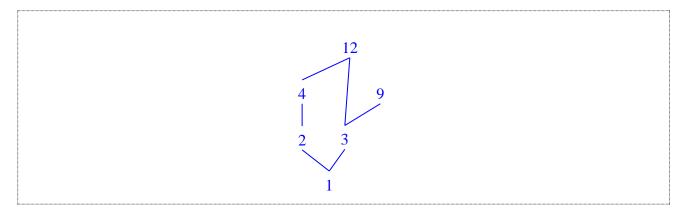
Let R an	d <i>S</i> be reflexive relations. Then, $\forall a \in A \ [(a, a) \in R \land (a, a) \in S]$, i.e., $(a, a) \in R \cap S$.
Therefor	e, $R \cap S$ is indeed reflexive.
OR	
Since <i>R</i>	and S are reflexive, their matrix representations have 1's in the diagonal. Since the
intersect	ion is represented as a Boolean and operation, The resulting matrix will also have
1's on th	e diagonal ($r_{ii} \land s_{ii} = 1 \land 1 = 1 \forall i$), and hence $R \cap S$ is also reflexive.

(b) (5 points) Prove or disprove that $S \circ R$ is a reflexive relation

Q5: [25 points] Solve the following questions

- (a) [15 points] Let *R* be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if a + d = b + c.
 - i. (10 points) Show that R is an equivalence relation.

ii. [5 points] list 5 distinct elements that belong to the class containing (3,1).


{(3,1), (4,2), (5,3), (6,4), (7,5), }

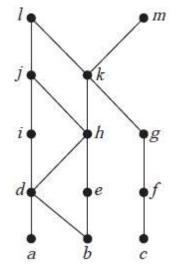
$R = R_0 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $R_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $R_2 = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ R_3 = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & $
$R_{2} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
$R_{3} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $R_{3} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$
$R_{4} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $R_{4} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
$R_{5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$
$\therefore \text{ Letting } A = \{a, b, c, d, e\}, R^* = A \times A$

Q6: [25 points]

(a) [10 points] Consider the following partial order $\{(a, b)|a \text{ divides } b\}$ on $\{1, 2, 3, 4, 9, 12\}$.

i. (4 points) Draw the Hasse diagram corresponding to the above poset.

ii. (3 points) What is the covering relation of the above poset?


Covering Relation = {(1,2), (1,3), (2,4), (3,9), (3,12), (4,12)}

iii. (3 points) Is the above poset a total order? Justify your answer.

No. Since neither (4,9) nor (9,4) belong to the poset, not all elements are comparable, and hence it
is not a total order.

(b) [15 points] Answer the following questions for the partial order represented by this Hasse diagram.

9~

i. (3 points) Find the maximal elements.

$\{l,m\}$	

ii. (2 points) Is there a greatest element? If yes, write it.

No.	

- iii. (3 points) Find all upper bounds of $\{a, b, c\}$.
- {*k*, *l*, *m*}
 - iv. (2 points) Find the least upper bound of $\{a, b, c\}$, if it exists.

	k	
v.	(3 points) Find all lower bounds of $\{j, k, m\}$.	
	$\{a, b, d, e, h\}$	

vi. (2 points) Find the greatest lower bound of $\{j, k, m\}$, if it exists.

h	